direct product, metabelian, soluble, monomial
Aliases: C5×C24⋊C6, C24⋊2C30, C22≀C2⋊C15, C23⋊1(C5×A4), C22⋊A4⋊2C10, (C22×C10)⋊1A4, (C23×C10)⋊1C6, C22.2(C10×A4), (C5×C22≀C2)⋊C3, (C5×C22⋊A4)⋊1C2, (C2×C10).6(C2×A4), SmallGroup(480,656)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C24 — C23×C10 — C5×C22⋊A4 — C5×C24⋊C6 |
C24 — C5×C24⋊C6 |
Generators and relations for C5×C24⋊C6
G = < a,b,c,d,e,f | a5=b2=c2=d2=e2=f6=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=ec=ce, cd=dc, fcf-1=bcde, fef-1=de=ed, fdf-1=e >
Subgroups: 328 in 70 conjugacy classes, 14 normal (all characteristic)
C1, C2, C3, C4, C22, C22, C5, C6, C2×C4, D4, C23, C23, C10, A4, C15, C22⋊C4, C2×D4, C24, C20, C2×C10, C2×C10, C2×A4, C30, C22≀C2, C2×C20, C5×D4, C22×C10, C22×C10, C22⋊A4, C5×A4, C5×C22⋊C4, D4×C10, C23×C10, C24⋊C6, C10×A4, C5×C22≀C2, C5×C22⋊A4, C5×C24⋊C6
Quotients: C1, C2, C3, C5, C6, C10, A4, C15, C2×A4, C30, C5×A4, C24⋊C6, C10×A4, C5×C24⋊C6
(1 5 8 9 4)(2 6 7 10 3)(11 29 22 25 39)(12 30 17 26 40)(13 31 18 27 35)(14 32 19 28 36)(15 33 20 23 37)(16 34 21 24 38)
(1 35)(4 27)(5 13)(8 31)(9 18)(11 15)(20 22)(23 25)(29 33)(37 39)
(1 37)(4 23)(5 15)(8 33)(9 20)(11 13)(18 22)(25 27)(29 31)(35 39)
(1 35)(2 38)(3 24)(4 27)(5 13)(6 16)(7 34)(8 31)(9 18)(10 21)(11 15)(12 14)(17 19)(20 22)(23 25)(26 28)(29 33)(30 32)(36 40)(37 39)
(1 37)(2 40)(3 26)(4 23)(5 15)(6 12)(7 30)(8 33)(9 20)(10 17)(11 13)(14 16)(18 22)(19 21)(24 28)(25 27)(29 31)(32 34)(35 39)(36 38)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12 13 14 15 16)(17 18 19 20 21 22)(23 24 25 26 27 28)(29 30 31 32 33 34)(35 36 37 38 39 40)
G:=sub<Sym(40)| (1,5,8,9,4)(2,6,7,10,3)(11,29,22,25,39)(12,30,17,26,40)(13,31,18,27,35)(14,32,19,28,36)(15,33,20,23,37)(16,34,21,24,38), (1,35)(4,27)(5,13)(8,31)(9,18)(11,15)(20,22)(23,25)(29,33)(37,39), (1,37)(4,23)(5,15)(8,33)(9,20)(11,13)(18,22)(25,27)(29,31)(35,39), (1,35)(2,38)(3,24)(4,27)(5,13)(6,16)(7,34)(8,31)(9,18)(10,21)(11,15)(12,14)(17,19)(20,22)(23,25)(26,28)(29,33)(30,32)(36,40)(37,39), (1,37)(2,40)(3,26)(4,23)(5,15)(6,12)(7,30)(8,33)(9,20)(10,17)(11,13)(14,16)(18,22)(19,21)(24,28)(25,27)(29,31)(32,34)(35,39)(36,38), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12,13,14,15,16)(17,18,19,20,21,22)(23,24,25,26,27,28)(29,30,31,32,33,34)(35,36,37,38,39,40)>;
G:=Group( (1,5,8,9,4)(2,6,7,10,3)(11,29,22,25,39)(12,30,17,26,40)(13,31,18,27,35)(14,32,19,28,36)(15,33,20,23,37)(16,34,21,24,38), (1,35)(4,27)(5,13)(8,31)(9,18)(11,15)(20,22)(23,25)(29,33)(37,39), (1,37)(4,23)(5,15)(8,33)(9,20)(11,13)(18,22)(25,27)(29,31)(35,39), (1,35)(2,38)(3,24)(4,27)(5,13)(6,16)(7,34)(8,31)(9,18)(10,21)(11,15)(12,14)(17,19)(20,22)(23,25)(26,28)(29,33)(30,32)(36,40)(37,39), (1,37)(2,40)(3,26)(4,23)(5,15)(6,12)(7,30)(8,33)(9,20)(10,17)(11,13)(14,16)(18,22)(19,21)(24,28)(25,27)(29,31)(32,34)(35,39)(36,38), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12,13,14,15,16)(17,18,19,20,21,22)(23,24,25,26,27,28)(29,30,31,32,33,34)(35,36,37,38,39,40) );
G=PermutationGroup([[(1,5,8,9,4),(2,6,7,10,3),(11,29,22,25,39),(12,30,17,26,40),(13,31,18,27,35),(14,32,19,28,36),(15,33,20,23,37),(16,34,21,24,38)], [(1,35),(4,27),(5,13),(8,31),(9,18),(11,15),(20,22),(23,25),(29,33),(37,39)], [(1,37),(4,23),(5,15),(8,33),(9,20),(11,13),(18,22),(25,27),(29,31),(35,39)], [(1,35),(2,38),(3,24),(4,27),(5,13),(6,16),(7,34),(8,31),(9,18),(10,21),(11,15),(12,14),(17,19),(20,22),(23,25),(26,28),(29,33),(30,32),(36,40),(37,39)], [(1,37),(2,40),(3,26),(4,23),(5,15),(6,12),(7,30),(8,33),(9,20),(10,17),(11,13),(14,16),(18,22),(19,21),(24,28),(25,27),(29,31),(32,34),(35,39),(36,38)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12,13,14,15,16),(17,18,19,20,21,22),(23,24,25,26,27,28),(29,30,31,32,33,34),(35,36,37,38,39,40)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 4 | 5A | 5B | 5C | 5D | 6A | 6B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | ··· | 10P | 15A | ··· | 15H | 20A | 20B | 20C | 20D | 30A | ··· | 30H |
order | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 5 | 5 | 5 | 5 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 15 | ··· | 15 | 20 | 20 | 20 | 20 | 30 | ··· | 30 |
size | 1 | 3 | 4 | 6 | 6 | 16 | 16 | 12 | 1 | 1 | 1 | 1 | 16 | 16 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 16 | ··· | 16 | 12 | 12 | 12 | 12 | 16 | ··· | 16 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 6 | 6 |
type | + | + | + | + | + | |||||||||
image | C1 | C2 | C3 | C5 | C6 | C10 | C15 | C30 | A4 | C2×A4 | C5×A4 | C10×A4 | C24⋊C6 | C5×C24⋊C6 |
kernel | C5×C24⋊C6 | C5×C22⋊A4 | C5×C22≀C2 | C24⋊C6 | C23×C10 | C22⋊A4 | C22≀C2 | C24 | C22×C10 | C2×C10 | C23 | C22 | C5 | C1 |
# reps | 1 | 1 | 2 | 4 | 2 | 4 | 8 | 8 | 1 | 1 | 4 | 4 | 2 | 8 |
Matrix representation of C5×C24⋊C6 ►in GL6(𝔽61)
20 | 0 | 0 | 0 | 0 | 0 |
0 | 20 | 0 | 0 | 0 | 0 |
0 | 0 | 20 | 0 | 0 | 0 |
0 | 0 | 0 | 20 | 0 | 0 |
0 | 0 | 0 | 0 | 20 | 0 |
0 | 0 | 0 | 0 | 0 | 20 |
0 | 1 | 60 | 0 | 0 | 0 |
1 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 8 | 1 | 0 | 0 |
0 | 0 | 8 | 0 | 1 | 0 |
0 | 0 | 8 | 0 | 0 | 1 |
60 | 0 | 0 | 0 | 0 | 0 |
60 | 0 | 1 | 0 | 0 | 0 |
60 | 1 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 1 | 0 | 0 |
8 | 0 | 0 | 0 | 1 | 0 |
8 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 60 | 0 | 0 | 0 |
1 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 |
53 | 53 | 0 | 60 | 60 | 60 |
0 | 0 | 8 | 0 | 0 | 1 |
0 | 0 | 8 | 0 | 1 | 0 |
60 | 0 | 0 | 0 | 0 | 0 |
60 | 0 | 1 | 0 | 0 | 0 |
60 | 1 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 1 | 0 |
8 | 0 | 0 | 1 | 0 | 0 |
0 | 53 | 53 | 60 | 60 | 60 |
0 | 0 | 0 | 60 | 0 | 1 |
53 | 53 | 53 | 59 | 60 | 60 |
0 | 0 | 0 | 60 | 1 | 0 |
31 | 31 | 31 | 8 | 0 | 0 |
31 | 32 | 31 | 8 | 0 | 0 |
31 | 31 | 32 | 8 | 0 | 0 |
G:=sub<GL(6,GF(61))| [20,0,0,0,0,0,0,20,0,0,0,0,0,0,20,0,0,0,0,0,0,20,0,0,0,0,0,0,20,0,0,0,0,0,0,20],[0,1,0,0,0,0,1,0,0,0,0,0,60,60,60,8,8,8,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,60,60,8,8,8,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,53,0,0,1,0,0,53,0,0,60,60,60,0,8,8,0,0,0,60,0,0,0,0,0,60,0,1,0,0,0,60,1,0],[60,60,60,8,8,0,0,0,1,0,0,53,0,1,0,0,0,53,0,0,0,0,1,60,0,0,0,1,0,60,0,0,0,0,0,60],[0,53,0,31,31,31,0,53,0,31,32,31,0,53,0,31,31,32,60,59,60,8,8,8,0,60,1,0,0,0,1,60,0,0,0,0] >;
C5×C24⋊C6 in GAP, Magma, Sage, TeX
C_5\times C_2^4\rtimes C_6
% in TeX
G:=Group("C5xC2^4:C6");
// GroupNames label
G:=SmallGroup(480,656);
// by ID
G=gap.SmallGroup(480,656);
# by ID
G:=PCGroup([7,-2,-3,-5,-2,2,-2,2,4203,850,10504,1586,5052,8833]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^5=b^2=c^2=d^2=e^2=f^6=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=e*c=c*e,c*d=d*c,f*c*f^-1=b*c*d*e,f*e*f^-1=d*e=e*d,f*d*f^-1=e>;
// generators/relations